Computer Program for a Double Exponential Equation to Determine Biological Constants

By WERNER LOWENTHAL and BARBARA L. VITSKY

Abstract

Anew computer program in Fortran II (with Format) for the equation, $C=\frac{a_{0} k_{a}}{V_{d}\left(k_{a}-k_{d}\right)}$ - ($e^{-k_{d} t}-e^{-k_{a} t}$), has been written. This program overcomes the problems of the previous programs published. A grid method was used to search for the constants and a method to handle exponential overflow was included. Applicability of the equation and the computer program was demonstrated on the IBM 1410 computer system with eight different sets of data from the literature. The data represented a variety of drugs, i.e., sulfaethylthiadiazole, aspirin alone or with additives, oxazepam, penicillin salts, and trimeprazine, in a variety of dosage forms. The conclusions of the authors were verified by the calculated constants. In some instances the conclusions of the originators of the data could be expanded by the use of the calculated constants.

A^{s}s our techniques become more sophisticated and our understanding of biological systems becomes greater, the mathematical interpretation of the data can become more refined.

Teorell's work (1) stands as a landmark in the field of kinetics of drug absorption, distribution, and excretion. Teorell's equation 25 is a simpli-

$$
C=\frac{k_{a} a_{0}}{V_{d}\left(k_{a}-k_{d}\right)}\left(e^{-k_{d} t}-e^{-k_{a} t}\right) \quad \text { (Eq. 1) }
$$

$$
\begin{aligned}
a_{0} & =\text { drug dose in mg. } / \mathrm{Kg} ., \\
C & =\text { blood drug concentration in mcg. } / \mathrm{ml} ., \\
t & =\text { time in hours, } \\
k_{a} & =\text { the apparent first-order absorption rate } \\
k_{d} & =\text { constant apparent } \mathrm{hr} .-1, \text { first-order drug disappear- } \\
V_{d} & \text { ance rate constant from the blood in hr. }{ }^{-1}, \\
V_{d} & \text { the specific apparent volume of drug dis- } \\
& \text { tribution in } \mathrm{L} . / \mathrm{Kg} .
\end{aligned}
$$

fication of the kinetics of drug absorption, distribution, and excretion. It describes the kinetics of drug appearance in the blood and its disappearance from the blood when the drug is administered by any route other than i.v. The constant k_{d} is a combination of various rate constants due to tissue absorption, drug release from tissues, metabolism, and excretion by all organs.

[^0]Equation 1 also neglects any effect due to excretion of the drug in the bile and reabsorption by the intestine. Teorell assumed apparent first-order kinetics for drug appearance and disappearance in the blood, which has been shown many times before to be a valid assumption. The absorption and excretion of certain drugs and dosage forms may not follow apparent firstorder kinetics, e.g., some sustained-release dosage forms or when metabolism of the drug is the slowest step.

In spite of the limitations of this equation, it may yield useful information about the rate of drug absorption, indirectly about the process of absorption, and the rate of drug disappearance from the blood.

It is the purpose of this paper to describe a new computer program used to solve Eq. 1, and to illustrate the application of this equation and computer program.
This program is different from the one previously reported (2) because a simpler, more rugged search routine is used to determine the constants, a method is included to handle exponential overflow, and the number of search grids is not limited. In addition, one less parameter is calculated, increasing speed and accuracy. A value for a_{0} / V_{d} is determined rather than for V_{d} only.

COMPUTER PROGRAM
Using the following:

$$
\frac{a_{0}}{V_{d}}=\gamma, \text { and } k_{a}-k_{d}=\delta
$$

Eq. 1 may be rewritten as:

$$
\begin{equation*}
C=\frac{\gamma k_{a}}{\delta}\left(e^{-k_{d} t}-e^{-k_{a} t}\right) \tag{Eq.2}
\end{equation*}
$$

Rearranging

$$
\begin{equation*}
C=\frac{\gamma}{\delta} k_{a} e^{-k_{a} t}\left(e^{\delta t}-1\right) \tag{Eq.3}
\end{equation*}
$$

Taking natural logs

$$
\begin{equation*}
\ln C-\ln \left(e^{\delta t}-1\right)=\ln \left(\frac{\gamma}{\delta} k_{a}\right)-k_{a} t \tag{Eq.4}
\end{equation*}
$$

Equation 4 may be calculated by means of the least squares procedure. The program calculates the best values for the constants by finding the curve with the minimum variance.

The program in Fortran II (with Format) is divided into three main parts: (a) the data input statements $1-70$, (b) the search for minimum variance, statements $75-360$, and (c) the printing of the final results, statements 360-480.

The first card of the input data contains the title of the data (up to 80 positions). The second card is the number of observations (N) and the print control k_{1}. If the value of the print control k_{1} is anything other than a zero or blank, the minimum variance and corresponding k_{a}, k_{d}, and k_{d} / k_{a} will be printed after each grid search. This was included in the program to give greater versatility if one is interested in seeing the results of each search. The third card contains the estimated values of k_{a} and for the ratio k_{d} / k_{a}. These estimates were made from literature values for similar drugs or just estimated. These estimates could vary by a factor of 10 or more and still obtain a proper solution to the equation. If the initial estimates of k_{a} and k_{d} differ from the final calculated values by a factor greater than 10 , the computations would take about 45 min . The computer will continue to compute until it has calculated the best values. The fourth card begins the observations, one time value, and the corresponding concentration per card.

The second portion of the program begins using the input to obtain a variance. The initial estimates of k_{a} and k_{d} / k_{a} become the center for a 2^{3} factorial (X in Fig. 1). The initial incrementing value of 0.1 is added or subtracted from the estimates of k_{a} and k_{d} / k_{a} giving eight new estimates for which variances are computed. A new factorial is built around the minimum variance of the eight computed. The current estimates of k_{a} and k_{d} / k_{a} are incremented and decremented in steps of 0.1 until the current minimum variance computed is larger than the previous one, or until k_{a} or k_{d} / k_{a} become zero or less than zero by subtraction of 0.1 . The 0.1 incrementing value is then reduced to 0.05 . The grid search routine continues alternately reducing the increment values by 0.005 each time the currently computed minimum variance exceeds the previous minimum variance, until the value of k_{a} increment reaches zero. The values for k_{a} and k_{d} / k_{a} are essentially incremented and decremented independently.

In this manner, the program converges on the minimum variance, which is assumed when the k_{a} increment reaches zero.

A simplified grid search routine is presented in Fig. 1.

Fig. 1.-Grid search routine. Key: \times, initial intersection, the first estimates of k_{a} and k_{d} / k_{a}; AH , first eight values to calculate variances. First minimum variance at A. The eight variances in grid 2 were greater than the one at A, so that the increments were reduced to 0.05 giving grid 3. For the purpose of this example both k_{a} and k_{d} / k_{a} were reduced simultaneously. In the program they are incremented and decremented independently. In grid 3 the new values of k_{a} and k_{d} / k_{a} gave larger variances than in A , so that the 0.05 increments were reduced by 0.005 (new increment $=0.045$), giving grid 4. Again for simplification both constants were reduced simultaneously. A new minimum variance was found at N . The eight values in a grid using grid 1 as an example are: A: $\mathrm{R}+$ increment, $k_{a}+$ increment; $\mathrm{B}: \mathrm{R}+$ increment, $k_{a} ; \mathrm{C}: \mathrm{R}+$ increment, k_{a} - increment; $D: R, k_{a}$ - increment; $\mathrm{E}: \mathrm{R}$ - increment, k_{a} - increment; $\mathrm{F}: \mathrm{R}$ - inctement, $k_{a} ; \mathrm{G}: \mathrm{R}$ - increment, $k_{a}+$ increment; and $\mathrm{H}: \mathrm{R}, k_{a}+$ increment.

The final portion of the program computes and prints calculated concentrations at $15-\mathrm{min}$. intervals through the maximum time of the observed data. Following this, the values for $\delta, a_{0} / V_{d}, k_{a}, k_{d}, k_{d} / k_{a}$, and the variance are printed.

A routine is set up in the program to avoid exponential overflow. This is done by checking the value of $-k_{a} t$. The exponential value $\left(e^{-k_{a} t}\right)$ approaches zero as time increases. Absorption should be complete after many hours (e.g., 24 hr .), so that if the value of $k_{a} t$ is greater than 50 , the rate of absorption into the blood is negligible and the effect due to absorption is set to zero.

The approach using input of k_{d} / k_{a} is taken rather than using a constant for k_{d} because it is more accurate to work with this ratio.

The program was written for an IBM 1410 computer system, and due to the small core usage, it may be adopted to almost any computer system using Fortran. This program is fairly lengthy, dependent in part on the accuracy of the initial estimates for k_{a} and k_{d} / k_{a} and in part due to running the program concurrently with an interruptible telecommunications monitor. The procedure takes from 5 min . to 45 min . per set of data.

The complete program for Fortran II (with Format) is presented in Fig. 2.

RESULTS AND DISCUSSION

Most blood concentration versus time data in the literature could not be fitted by this equation because of: (a) poor spacing of time intervals, (b)
insufficient number of data, and (c) data were not collected over a sufficiently long period of time. These shortcomings of the data usually meant that the experiments were not designed for kinetic studies. Most of the usable data were found in the pharmaceutical literature where experiments were often designed for rate studies.

If the data showed an initial "lag phase" and only two points on the ascending portion of the
curve, then the program may fail. Dropping the data for the lag phase and solving the equation would reduce the variance but may still give a poor fit due to lack of data. If the observed data give a high, sharp peak, the program would calculate a line below the peak and give a relatively poor estimate of the concentrations representing the peak.

Obviously, if the data do not follow apparent first-order kinetics, the equation would not fit the

Fig. 2.- Computer program in Fortran II (with Format) for double exponential equation.
observed data. Symmetrical curves on rectangular coordinates are an indication of non-first-order rates.

If the data for each subject were used instead of averages, then additional steps may be added to the program to calculate the variation about each point on the observed curve. With the present program separate tests must be made to determine the goodness of fit of the calculated curve. The χ^{2} test,

$$
x^{2}=\frac{\left(C_{\text {obs. }}-C_{\mathrm{oa} \text { led. }}\right)^{2}}{C_{\text {ealed. }}}
$$

can be used. The χ^{2} values obtained are compared with the table of χ^{2} values. It was found that the computer calculated variance was just as good an indicator of goodness of fit as the χ^{2} test.

The following is a brief discussion of several sets of data obtained from the literature. The constants are presented in Table I.

The disappearance rate constant for sulfacthylthiadiazole (SETD) calculated by Swintosky et al.

Table I.-Computer Calculated Constants from Literature Data

Ref.	$\begin{gathered} k_{a} \\ \mathrm{hr}^{-1} \end{gathered}$	$\stackrel{k}{d}_{\mathrm{hr}^{-{ }^{-1}}}$	$\stackrel{V_{d}}{\mathrm{~L} . / \mathrm{K}_{\mathrm{g}} .}$
(3)	2.675	$0.0856^{\text {a }}$	0.62
(4)			
1.0 Gm .	0.500	0.438	0.0718
2.0 Gm .	0.455	0.417	0.0895
3.0 Gm .	0.285	0.221	0.120
4.0 Gm.	0.495	0.370	0.117
(5)			
Plain tablet	0.970	0.0909^{5}	0.189
Sustained-release	0.955	$0.0604^{\text {c }}$	0.271
(6)			
D	2.07	0.246	0.146
E	0.535	0.461	0.0826
L	0.635	0.400	0.0955
(7)	0.295	0.0723	0.906
(8)			
Fasting:			
penicillin acid	2.495	0.986	$5.643{ }^{\text {d }}$
cal. penicillin V pot. penicillin	3.315	1.061	7.112 ${ }^{\text {d }}$
V	3.225	0.903	7.908^{d}
sod. penicillin V	2.210	0.641	$3.312^{\text {d }}$
Std. meal:			
penicilin acid	0.820	0.816	$2.274{ }^{\text {d }}$
cal. penicillin			
$\stackrel{\mathrm{V}}{\text { pot penicillin }}$	0.990	0.985	$2.903^{\text {d }}$
pot. penicillin Vo	1.035	1.025	$3.809^{\text {d }}$
sod. penicillin V	0.940	0.931	$1.367{ }^{\text {d }}$
(9)			
Buffered ASA	1.310	0.116	0.142
138	0.155	0.136	0.228
152	0.195	0.120	0.165
134 B	Poorfit		
134 C	0.435	0.154	0.129
(10)			
5 mg .	0.465	0.0860	0.000457
15 mg .	0.865	0.0800	0.000533
5 mg . t.i.d.	0.100	0.0835	0.000520
$15-\mathrm{mg}$. sustainedrelease	0.0950	0.0931	0.000528

[^1](3) was verified. Using averages of the published data, the k_{d} calculated by the computer is 0.0856 hr. ${ }^{-1}$ and that reported was $0.073 \mathrm{hr} .^{-1}$ (average of four values). The k_{a} calculated is $2.68 \mathrm{hr}^{-1}$, indicating a much more rapid absorption than disappearance from the blood. The a_{0} was calculated from the $2.0-\mathrm{Gm}$. dose divided by the average weight of the subjects.

Later Swintosky et al. (4) reported blood concentrations from SETD given in 1.0, 2.0, 3.0, and $4.0-\mathrm{Gm}$. doses. These data could not be fitted by Eq. 1 using the previous program (2). There is an apparent "lag time" in the initial absorption of the drug before absorption becomes an exponential process, so that the concentration at 20 min. was omitted. This resulted in better fitting the observed data by the calculated data, and the variance was decreased by about one-half. The omission of the data at 20 min. resulted in only small increases in the values on the constants. The dose a_{0} was calculated as indicated above. The present equation would require an additional term to fit the initial "lag time." This "lag time" is important in determining length of time for absorptive process to occur.

The constants calculated from these data differ considerably from those calculated from the first set of data described above. There is essentially no difference in the k_{a} for $1.0,2.0$, and $4.0-\mathrm{Gm}$. doses, and for k_{d} for 1.0 and $2.0-\mathrm{Gm}$, doses. The V_{d} for 1.0 and $2.0-\mathrm{Gm}$. doses are similar, as are those for 3.0 and $4.0-\mathrm{Gm}$. doses. The k_{a} and k_{d} for the $3.0-\mathrm{Gm}$. dose are smaller than those for the other doses. Some of the discrepancies are due to the fact that the calculated data cannot reproduce the high peaks in the 1.0 and $2.0-\mathrm{Gm}$. doses, so the computer-calculated k_{a} could be smaller than those reported by Swintosky et al. (3) in their earlier work. Also, if the data had been collected for longer than 4 hr., a different k_{d} might have been obtained. The k_{d} for the $3.0-\mathrm{Gm}$. dose may be only an estimate because of the lack of data to properly calculate the k_{d}. For the $4.0-\mathrm{Gm}$. dose, the calculated concentrations did not go so high as the observed concentrations. In the other three cases the calculated data appear to give a good approximation of the experimental data. Since the $3.0-\mathrm{Gm}$. dose gives different constants, the $4.0-\mathrm{Gm}$. dose a relatively small V_{d}, and the V_{d} for the 3.0 and $4.0-\mathrm{Gm}$. doses differ from the 1.0 and $2.0-\mathrm{Gm}$. doses, it is possible that different rate-limiting steps become important at the $3.0-\mathrm{Gm}$. dose and greater.

Nicholson et al. (5) compared blood levels due to SETD in plain tablets and as sustained-release tablets. The data were averaged and the computer calculated constants found in Table I verify the constants for rate of disappearance from the blood reported by Nicholson and co-workers. The k_{a} did not vary significantly between the plain tablets and the sustained-release tablets, although the rates of absorption vary. The decrease in k_{d} for the sustained-release tablets is accompanied by an increase in V_{d} indicating wider distribution or more SETD in the fluids which would be expected from Eq. 1. The smaller k_{d} indicates slower disappearance from the blood.

Liberman and Wood (6) compared three different aspirin formulations and reported serum salicylate levels up to 2.5 hr . The three formulations
were: D, aspirin, dihydroxyaluminum glycinate, and magnesium carbonate; E, commercial aspirinstarch granulation; and L, a commercial aspirin tablet. The constants for formula E could not be calculated by the previous program (2). The data showed higher and earlicr peak of salicylate in serum with formula D. This can be seen from the k_{a} which is 3 to 4 times greater than the k_{a} for the other two preparations, a smaller k_{d} and a larger V_{d}, indicating a more rapid absorption and a slower loss from the blood.

The constants for the data of Walkerstein et al. (7) could not be calculated by the previous program but were satisfactorily calculated by the new program. Plasma levels of ${ }^{14} \mathrm{C}$-oxazepam given orally to dogs were reported from $0,5-120 \mathrm{hr}$. The calculated constants are shown in Table I.

Juncher and Raaschou (8) gave 400,000 units of penicillin acid and various penicillin salts to 10 subjects, either fasting or after a standard meal. Blood levels were measured from 0.25 to 6 hr . The fasting subjects had higher blood levels and the calcium and potassium salts of penicillin V gave the highest blood levels. The authors' conclusions ate verified by the calculated constants. The data from subjects which had fasted gave much higher k_{a}, indicating higher rates of absorption than the data from subjects who ate a standard meal. The rate of decline in the blood levels was about the same for all preparations.

Wood and Syarto (9) compared buffered aspirin to aspirin coated with different ratios of ethyland methylcellulose; for formula 138 the ratio was $100: 1$; for $152,82.5: 17.5$; for $134 \mathrm{~B}, 75: 25$; and for $134 \mathrm{C}, 25: 75$. The workers did not calculate any rate constants, but stated plots of cumulative in vivo release fit apparent first-order better than zero-order kinetics. The same amount of aspirin was used in all the formulas. Blood levels were obtained from 0.5 to 24 hr . The constants shown in Table I indicate that the absorption rate for buffered aspirin is much greater than for the other preparations. The rate of decrease in blood for all the preparations is similar; also V_{d} does not change very much with formulation changes. As the ethylcellulose content of the coatings decreases, the rate of aspitin absorption increases and the apparent specific
body volume decreases. Therefore, the amount of ethylcellulose in the coating affects the rate of aspirin absorption.
Johnson and Masters (10) gave ${ }^{35} \mathrm{~S}$-labeled trimeprazineiltartrate orally to patients. Serum levels up to 48 lir. were used to compare a $5-\mathrm{mg}$, dose, a $15-\mathrm{mg}$. dose, a 5 -mg. dose given 3 times a day, and a $15-\mathrm{mg}$. dose sustained-release preparation. These workers reported the characteristic differences expected between a 5 -mg. dose and a 15 -mg. dose, and that 5 mg . given 3 times a day and the $15-\mathrm{mg}$. sustained-release product gave similar blood levels. The constants shown in Table I indicate that the rate of disappearance of the drug from the blood given by the various dosage regimens and the V_{d} closely agree. The V_{d} for the $5-\mathrm{mg}$. dose is smaller because there is only one-third the amount to be distributed in the body compared to the other $15-\mathrm{mg}$. doses. The V_{d} for the other three preparations are similar. The k_{a} for the $15-\mathrm{mg}$. dose is about 1.86 times greater than the k_{a} for the $5-\mathrm{mg}$. dose; assuming instantaneous availability for both dosages, this could indicate k_{a} is dose dependent. The more drug exposed to absorbing surfaces, the more rapid the absorption. The k_{a} for the $5-\mathrm{mg}$. dose given 3 times a day and the $15-\mathrm{mg}$. sustained-release preparation appear the same, the k_{d} are similar, and the V_{d} appear the same, indicating the divided dose therapy and the sustained-release preparation are similar.

REFERENCES

(1) Teorell, T., Arch. Intern. Pharmacodyn., 57, 205 1937)
(2) Borzelleca, J. F., and Lowenthal, W., J. Pharm. Sci., 55, 151(1966)
(3) Swintosky, J. V., Robinson, M. J., Folta, E. L., and

Free, S. M., J. Am. Pharm. Assoc, Sci. Ed., 46, $399(1957$).
(4) Swintosky, I. V., Foltz, E. I.., Bondi, A., Jr., and Robinson, M. J., ibid., 47, 136(1958)
(5) Nicholson, A. E., Tucker, S. J., and Swintosky, J. V., ibid., 49, 40(1960).
(6) Liberman, S. V., and Wood, J. H., J. Pharm. Sci., 53, 1492(1964).
(7) Walkerstein, S. S., Wiser, R., Gudmundsen, C. H. Kimmel, H. B., and Corradino, R. A., ibid., 53, 1181(1964).
(8) Juncher, H., and Raaschou, F., Antibiot. Med. Clin.

Therap., 4, 497(1957)
(9) Wood, J. H., and Syarto, J., J. Pharm. Sci., 53, 877 1964)
(10) Johnson, P. C., and Masters, Y. F., J. Lab. Clin. Med., 59, 993(1962).

[^0]: Received August 4, 1966, from the Department of Pharmacy and the Department of Biometry, Medical College of Virginia, Richmond 23219.

 Accepted for publication October 14, 1966.
 This investigation was supported in part by grant P07-FR-00016-04 from the National Institutes of Health, U. S. Public Health Service, Bethesda, Md.
 The suggestions and assistance given by Mr. Samuel E. Ketner, Department of Biometry, concerning the grid search routine and its program, are acknowledged.
 The flow diagram for the program shown in Fig. 2 is available from the authors on request.

[^1]: ${ }^{a} 0.073 \mathrm{hr} .^{-1}$ reported. ${ }^{b} 0.09 \mathrm{hr} .^{-1}$ reported for 1 patient. ${ }^{\circ} 0.05$ reported. ${ }_{a} a_{0} / V d$ values are not given because patient weights were not reported.

